Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.

نویسندگان

  • Mohammad A Asadollahi
  • Jérôme Maury
  • Kasper Møller
  • Kristian Fog Nielsen
  • Michel Schalk
  • Anthony Clark
  • Jens Nielsen
چکیده

The yeast Saccharomyces cerevisiae was chosen as a microbial host for heterologous biosynthesis of three different plant sesquiterpenes, namely valencene, cubebol, and patchoulol. The volatility and low solubility of the sesquiterpenes were major practical problems for quantification of the excreted sesquiterpenes. In situ separation of sesquiterpenes in a two-phase fermentation using dodecane as the secondary phase was therefore performed in order to enable quantitative evaluation of different strains. In order to enhance the availability of the precursor for synthesis of sesquiterpenes, farnesyl diphosphate (FPP), the ERG9 gene which is responsible for conversion of FPP to squalene was downregulated by replacing the native ERG9 promoter with the regulatable MET3 promoter combined with addition of 2 mM methionine to the medium. This strategy led to a reduced ergosterol content of the cells and accumulation of FPP derived compounds like target sesquiterpenes and farnesol. Adjustment of the methionine level during fermentations prevented relieving MET3 promoter repression and resulted in further improved sesquiterpene production. Thus, the final titer of patchoulol and farnesol in the ERG9 downregulated strain reached 16.9 and 20.2 mg/L, respectively. The results obtained in this study revealed the great potential of yeast as a cell factory for production of sesquiterpenes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of ERG9 Repression and Enzyme Fusion Technology for Improved Production of Amorphadiene in Saccharomyces cerevisiae

The yeast strain (Saccharomyces cerevisiae) MTCC 3157 was selected for combinatorial biosynthesis of plant sesquiterpene amorpha-4,11-diene. Our main objective was to overproduce amorpha 4-11-diene, which is a key precursor molecule of artemisinin (antimalarial drug) produced naturally in plant Artemisia annua through mevalonate pathway. Farnesyl diphosphate (FPP) is a common intermediate metab...

متن کامل

Enhancement of valerenic acid production in Valeriana officinalis roots by methyl jasmonate -mediated transcriptional changes of sesquiterpene synthase genes

Valeriana officinalis (valerian), as a nutraceutical herb, is widely used for its sedative and hypnotic properties. It is known that C15 sesquiterpenoid valerenic acid (VA) is the active ingredient responsible for pharmacological effects of V. officinalis. To evaluate the effect of methyl jasmonate (MeJA) concentrations (50 and 100 µM...

متن کامل

Enhancement of valerenic acid production in Valeriana officinalis roots by methyl jasmonate-mediated transcriptional changes of sesquiterpene synthase genes

Valeriana officinalis (valerian), as a nutraceutical herb, is widely used for its sedative and hypnotic properties. It is known that C15 sesquiterpenoid valerenic acid (VA) is active ingredient responsible for pharmacological effects of V. officinalis. To evaluate the effect of methyl jasmonate (MeJA) concentrations (50 and 100 µM) in the modulation of expression patterns of the genes involved ...

متن کامل

Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.

Terpenes have various applications as fragrances, cosmetics and fuels. One of the most prominent examples is the sesquiterpene farnesene, which can be used as diesel substitute in its hydrogenated form farnesane. Recent metabolic engineering efforts have enabled efficient production of several terpenes in Saccharomyces cerevisiae and Escherichia coli. Plant terpene synthases take on an essentia...

متن کامل

Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.

The ergosterol biosynthetic pathway is a specific branch of the mevalonate pathway. Since the cells requirement for sterols is greater than for isoprenoids, sterol biosynthesis must be regulated independently of isoprenoid biosynthesis. In this study we explored the transcriptional regulation of squalene synthase (ERG9) in Saccharomyces cerevisiae, the first enzyme dedicated to the synthesis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2008